Big Chem: Units 26-27 REDOX, Electrochemistry

PRINT	Name	Period	

Half-Reaction Problems

Using Appendix 8 and the backside, write the <u>two half reactions</u> for each reaction, <u>balance the electrons</u>, and <u>find the voltage</u>.

Will the reaction go? Tell why.

1.
$$Ca + Cu^{+2} \longrightarrow$$
2. $Mn^{+2} + H_2Se \longrightarrow$
3. $NO + Sn^{+4} \longrightarrow$
4. $MnO_4^{-1} + Cr \longrightarrow$
5. $Te + SO_2 \longrightarrow$
6. $Ba + I_2 \longrightarrow$
7. $Pb^{+2} + NO_2 \longrightarrow$
8. $Cr + S \longrightarrow$
9. $Rb + Co^{+2} \longrightarrow$
10. $MnO_2 + Fe \longrightarrow$

Chapters 26 & 27 Problems:

- 1. Define: a) Oxidation Number, b) Valence, c) Ion,
 - d) Electrolyte, e) Electrode, f) Electrochemical Cell,
 - g) Battery, h) Oxidation, i) Reduction, j) REDOX.
- 2. In the following, give the oxidation number for the indicated atoms: *Hint: Write x, the oxidation number, over the element and add up the oxidation numbers of the known elements.* See Rules of Oxidation Numbers.
 - a. S in Na_2SO_3 , b. Mn in $KMnO_4$, c. N in $Ca(NO_3)_2$,
 - d. C in Na_2CO_3 , e. N in NO_2 , f. S in HSO_4 , g. S in $H_2S_2O_7$,
 - h. S in $A1_2S_3$ (let Al = +3), i. Mn in $MnCl_2$ (let Cl = -1),
 - j, C in $C_{12}H_{22}O_{11}$. Ans: Show work!

Use Ups & Downs method to balance these and Check your answers!

Diatomic Elements (H2 O2 N2 Cl2 Br2 I2 F2) are diatomic only when FREE. Not as ions or in compds.

1.
$$Cr_2O_7^{-2} + Fe^{+2} + H^{+1} \longrightarrow Cr^{+3} + Fe^{+3} + H_2O$$

2.
$$MnO_2^{-1} + Sn^{+2} + H^{+1} \longrightarrow Mn^{+2} + Sn^{+4} + H_2O$$

3.
$$NO3^{-1} + Cl^{-1} + H^{+1} \longrightarrow NO + Cl_2 + H_2O$$

4.
$$NO_2 + H_2O + Mn^{+2} \longrightarrow NO_3^{-1} + Mn + H^+$$

5.
$$Cr^{+3} + I_2 + H_2O \longrightarrow Cr_2O_7^{-2} + H^{+1} + I^{-1}$$

6.
$$AsO_4^{-3} + NO + H^+ \longrightarrow NO_3^{-1} + As_2O_3 + H_2O$$

7.
$$Cu + NO_3^{-1} + H^+$$
 $Cu^{+2} + NO + H_2O$

8. Sb +
$$SO_4^{-2}$$
 + H^{+1} \longrightarrow SO_2 + Sb^{+3} + H_2O