Big Chem: Unit 5 The Mole

PRINT Name

\qquad Period \qquad

1. Calculate the molecular or formula masses of the following compounds, all in amu ($\mathrm{g} / \mathrm{mol}$):
a. $\mathrm{C}_{2} \mathrm{H}_{6}$, b. SiCl_{4}, c. MgCO_{3}, d. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, e. $\mathrm{K}_{2} \mathrm{~S}$, f. $\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}$, g. $\mathrm{Pb}_{3}\left(\mathrm{AsO}_{4}\right)_{2}$, h. $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$. Ans: $a=30, b=170, c=84, d=310, e=110, f=58, g=899, h=342$.
Make the following conversions SHOWING YOUR METHOD, the Hup, Two, Three, Four!
2. 1.00×10^{26} molecules of SnCl_{2} to moles. Ans: $1.66 \times 10^{2} \mathrm{~mol}$.
3. 0.400 moles of $\mathrm{H}_{2} \mathrm{O}$ to molecules.

Ans: 2.41×10^{23} molecules.
4. 76.0 grams CaBr_{2} to moles.

Ans: 0.380 mol . Or $3.80 \times 10^{-1} \mathrm{~mol}$.
5. 18.0 grams HBr to moles.
6. 9.30 moles SiH_{4} to molecules.

Ans: 0.222 mol . Or $2.22 \times 10^{-1} \mathrm{~mol}$.
7. Find the mass of one atom of Na .

Ans: $5.60 \times!0^{24}$ molecules.
8. Find the mass of one molecule of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Ans. $3.82 \times 10^{-23} \mathrm{~g} /$ atom
Ans. $1.63 \times 10^{-22} \mathrm{~g} / \mathrm{molecule}$.
Compute the molarity of the following solutions:
9. $145 \mathrm{~g} \mathrm{NH}_{4} \mathrm{Cl}$ in 500 ml of solution.

Ans: 5.4 M
10. $41.3 \mathrm{~g} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}$ in 100 ml of solution.

Ans: 2.3 M
$11.35 .0 \mathrm{~g} \mathrm{MnSiF}_{6}$ in 50.0 ml of solution.
Ans: 3.56 M

SHOW YOUR METHOD, the Hup, Two, Three, Four!

Describe the preparation of the following solution:
12.500 ml of 1.50 M AgF .

Ans: Dissolve 95.3 g of AgF in enough water to make 500 ml of solution.
Find the percentage composition of the following:

13. CsF^{2}	Ans: $87.5 \% ; 12.5 \%$.
14. $\mathrm{Bi}_{2} \mathrm{O}_{3}$.	Ans: $89.7 \%, 10.3 \%$.
15. BaH_{2}.	Ans: $98.6 \%, 1.44 \%$.

Find the empirical formulas of the following compounds:
16. $1.67 \mathrm{~g} \mathrm{Ce}, 4.54 \mathrm{~g} \mathrm{I}$. Ans: Cel_{3}
17. $6.27 \mathrm{~g} \mathrm{Ca}, 1.46 \mathrm{~g} \mathrm{~N}$. Ans: $\mathrm{Ca}_{3} \mathrm{~N}_{2}$
18. The molecular mass of benzene is 78 and its empirical formula is CH . What is the molecular formula for benzene? Ans: $\mathrm{C}_{6} \mathrm{H}_{6}$
19. What is the molecular formula of dichloroacetic acid, if the empirical formula is CHOCl and the molecular mass is $129 \mathrm{~g} / \mathrm{mol}$? Ans: $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}$

Find the formulas for the following hydrates:
20. $95.3 \mathrm{~g} \mathrm{LiNO}_{3}, 74.7 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$. Ans: $\mathrm{LiNO}_{3} \bullet 3 \mathrm{H}_{2} \mathrm{O}$
21. $89.2 \% \mathrm{BaBr}_{2}, 44.6 \% \mathrm{H}_{2} \mathrm{O}$ (Note: \%-ages may be replaced with grams because they are in the same ratio). Ans: $\mathrm{BaBr}_{2} \bullet 8 \mathrm{H}_{2} \mathrm{O}$
22. Explain the difference between the terms mole and molarity.
23. Explain the difference between an empirical formula and a molecular formula.

