Big Chem: Unit 5 The Mole

PRINT Name _____ Period _____

- 1. Calculate the molecular or formula masses of the following compounds, all in amu (g/mol):
- a. C₂H₆, b. SiCl₄, c. MgCO₃, d. Ca₃(PO₄)₂, e. K₂S, f. CH₂CHCH₂OH, g. Pb₃(AsO₄)₂, h. C₁₂H₂₂O₁₁. Ans: a=30, b=170, c=84, d=310, e=110, f=58, g=899, h=342.

Make the following conversions SHOWING	GYOUR METHOD, the Hup, Two, Three, Four!
2. 1.00 x 10^{26} molecules of SnCl ₂ to moles.	Ans: 1.66 X 10 ² mol.
3. 0.400 moles of H_2O to molecules.	Ans: 2.41 X 10 ²³ molecules.
4. 76.0 grams $CaBr_2$ to moles.	Ans: 0.380 mol. Or 3.80 X 10 ⁻¹ mol.
5. 18.0 grams HBr to moles.	Ans: 0.222 mol. Or 2.22 X 10 ⁻¹ mol.
6. 9.30 moles SiH ₄ to molecules.	Ans: 5.60 X 1024 molecules.
7. Find the mass of one atom of Na.	Ans. 3.82 X 10 ⁻²³ g/atom
8. Find the mass of one molecule of H_2SO_4 .	Ans. 1.63 X 10 ⁻²² g/molecule.

Compute the molarity of the following solutions:

9. 145 g NH ₄ Cl in 500 ml of solutior	n. Ans: 5.4 M
10. 41.3 g Fe(NO ₃) ₂ in 100 ml of solu	ition. Ans: 2.3 M
11. 35.0 g $MnSiF_6$ in 50.0 ml of soluti	ion. Ans: 3.56 M

SHOW YOUR METHOD, the Hup, Two, Three, Four!

Describe the preparation of the following solution:

12. 500 ml of 1.50 M AgF.

Ans: Dissolve 95.3 g of AgF in enough water to make 500ml of solution.

Find the percentage composition of the following:

13. CsF.	Ans: 87	'.5%; 12.5%
14. Bi ₂ 0 ₃ .	Ans: 89	.7%, 10.3%
15. BaH ₂ .	Ans: 98	.6%, 1.44%

Find the empirical formulas of the following compounds:

16. l.67 g Ce, 4.54 g l.	Ans: Cel ₃
17. 6.27 g Ca, 1.46 g N.	Ans: Ca ₃ N ₂

- 18. The molecular mass of benzene is 78 and its empirical formula is CH. What is the molecular formula for benzene? Ans: C_6H_6
- 19. What is the molecular formula of dichloroacetic acid, if the empirical formula is CHOCl and the molecular mass is 129g/mol? Ans: $C_2H_2O_2Cl_2$

Find the formulas for the following hydrates:

- 20. 95.3 g LiNO₃, 74.7 g H₂O. Ans: LiNO₃•3H₂O
- 21. 89.2% BaBr₂, 44.6% H₂O (*Note: %-ages may be replaced with grams because they are in the same ratio*). Ans: BaBr₂•8H₂O
- 22. Explain the difference between the terms mole and molarity.
- 23. Explain the difference between an empirical formula and a molecular formula.

STAPLE THIS PAPER TO YOUR PAPERS (at home). Turn in at the Beginning of the Period when due.