Unit 7, Stoichiometry

Print Name \qquad Per \qquad

Note: You must have a balanced equation before solving the problems! And you MUST show the Hup, Two, Three, Four for all calculations!

1. How many grams of H_{2} can be produced from the reaction of 11.5 grams of sodium with an excess of water? Hint: $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O}--->2 \mathrm{NaOH}+\mathrm{H}_{2}$. Ans: 0.505 g .
2. Nitrogen reacts with 2.00 grams of hydrogen. How many grams of ammonia are produced? Hint: Ammonia is NH_{3}. Nitrogen is diatomic (honclbrif). Ans: 11.2 g .
3. How many grams of oxygen are required to oxidize 85.6 grams of carbon? Hint: Oxygen is diatomic,

$$
\mathrm{C}+\mathrm{O}_{2}--->\mathrm{CO}_{2} . \quad \text { Ans: } 228 \mathrm{~g} .
$$

4. The action of carbon monoxide on iron(III) oxide (ferric oxide) can be represented by the equation, $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO}--->2 \mathrm{Fe}+3 \mathrm{CO}_{2}$. What would be the amount of carbon monoxide used if 18.7 grams of iron were produced? Ans: 14.1 g .
5. How many grams of hydrochloric acid (HCl) are required to react with 75.1 grams of calcium hydroxide? Remember the rules for parentheses for calcium hydroxide. Ans: 74.6g.
6. How many grams of hydrogen gas are produced when 5.62 grams of aluminum react with hydrochloric acid? Hint: hydrochloric acid is hydrogen chloride, hydrogen gas is diatomic. Ans: 0.631 g .
7. How much heat is required to raise the temperature of 91.4 g of PCl_{3} from $25.0^{\circ} \mathrm{C}$ to $76.1^{\circ} \mathrm{C}$? From Table A-5, c $=0.874 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}^{\mathrm{o}}$. Ans. $=4080 \mathrm{~J}$.
8. How much heat is required to raise the temperature of $4.66 \mathrm{~g} \mathrm{CCl}_{4}$ from $20.9^{\circ} \mathrm{C}$ to $76.8^{\circ} \mathrm{C}$? From Table A-5, $\mathrm{c}=0.856 \mathrm{~J} / \mathrm{g} \cdot \mathrm{C}^{\mathrm{o}}$. Ans. $=223 \mathrm{~J}$
9. How much heat is required to raise the temperature of 787 g of $\mathrm{H}_{2} \mathrm{O}$ from $18.0^{\circ} \mathrm{C}$ to $100.0^{\circ} \mathrm{C}$? From Table A-5, $\mathrm{c}=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}^{\mathrm{o}}$. Ans. $=270,00 \mathrm{~J}$.
10. Compute the change in enthalpy for the formation of 193 grams of ammonium bromide from ammonia and hydrogen bromide. Hint: Remember the difference between ammonia and ammonium (nevah forget!), and find $\Delta \mathrm{H}$ then multiply by the moles of ammonium bromide. From Table A-6, $\Delta \mathrm{H}$ in $\mathrm{kj} / \mathrm{mol}: \mathrm{NH}_{3}=-46.2, \mathrm{NH}_{4} \mathrm{Br}=-270, \mathrm{HBr}=-36.2$.

Ans: $\Delta \mathrm{H}=-188 \mathrm{kj} / \mathrm{mol},-370 \mathrm{~kJ}$.
11. Compute the change in enthalpy for the displacement of O.O663 grams of bromine from the reaction of
$\mathrm{Cl}_{2}+2 \mathrm{NaBr}--->2 \mathrm{NaCl}+\mathrm{Br}_{2}$. From Table A-6, $\Delta \mathrm{H}$ in $\mathrm{kj} / \mathrm{mol}^{2} \mathrm{Br}_{2}=0.0, \mathrm{NaBr}=-360, \mathrm{Cl}_{2}=0.0$, $\mathrm{NaCl}=-411 . \quad$ Ans: $\Delta \mathrm{H}=-102 \mathrm{kj} / \mathrm{mol},-0.0423 \mathrm{~kJ}$.
12. What is the difference between endothermic reactions and exothermic reactions?

