Experiment 19, The Principle of le Chatelier

Name \qquad Per \qquad
Purpose: To shift the equilibrium of the following reactions using le Chatelier's Principle, When a system at equilibrium is stressed, it will shift in the direction that absorbs the stress. We can stress an equilibrium by changing temperature, pressure, or concentration of the reactants or products. Here are the reactions for Part I:

Procedure:

Part I:

a. Obtain 5.0 ml of $0.1 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ and 5.0 ml of $0.1 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in separate 13 X 150 mm test tubes. These will serve sources of the aqueous ions, $\mathrm{CrO}_{4}{ }^{-2}$ and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{-2}$. Do NOT chuck them! Record the color of each solution.
b. Place 10 drops of each solution from Step a into separate test tubes. Add, a drop at a time, some 1 M NaOH solution alternately to each solution until a color change is noted in one of the tubes. Record the colors and retain these tubes for Step e.
c. Place 10 drops of each stock solution from Step a above into separate test tubes. Add, a drop at a time, some 1 M HCl solution alternately to each solution until a color change is noted in one of the tubes. Record the colors and retain these tubes for Step d.
d. Add 1 M NaOH , drop by drop, to one of the tubes obtained in Step c until a change is noted.
e. Add 1 M HCl drop by drop, to one of the tubes obtained in Step \mathbf{b} until a change is noted.

Questions for Part I:

1a. What can you conclude about the reaction, $2 \mathrm{CrO}_{4}{ }^{-2}-->\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{-2}$, and its dependence on hydrogen ions, \mathbf{H}^{+}, as noted in Step c and Step e?

1b. Balance the equation by adding the proper number of \mathbf{H}^{+}ions and $\mathbf{H}_{2} \mathbf{O}$ molecules to the appropriate side of the equation.

2a. What can you conclude about the reverse reaction, $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{-2}--->2 \mathrm{CrO}_{4}{ }^{-2}$, and its dependence on hydroxide ions, $\mathbf{O H}^{-}$, as noted in Step b and Step d?

2b. Balance the equation by adding the proper number of OH^{+}ions and $\mathbf{H}_{2} \mathbf{O}$ molecules to the appropriate side of the equation.

Part II: The equilibrium of Solid Barium Chromate, BaCrO_{4}, with a Saturated Solutions of its Ions:
a. Place 10 drops of $0.1 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ in a test tube. Add 2 drops of 1 M NaOH . Add, a drop at a time, 0.1 M $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$, until a change is noted. Record the result. Retain this test tube for Step c.
b. Place 10 drops of $0.1 \mathrm{M}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in a tube. Add 2 drops of 1 M HCl then 10 drops of $0.1 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$. Record the result and retain this tube for Step d.

Record your conclusion about the relative solubilities of BaCrO_{4} and $\mathrm{BaCr}_{2} \mathrm{O}_{7}$ from your observations in Step a and Step b.
c. To the tube from Step a add, drop by drop, 1 M HCl until a change is noted. Record your observations.
d. To the tube from Step badd, drop by drop, 1 M NaOH until a change is noted. Record your observation.
e. Suggest a way to reverse the changes and reactions you observed in Step c. Do the same for Step d. Try these experiments.
f. Place 10 drops of $0.1 \mathrm{M}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in a tube and 10 drops of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ in another tube. Add 5 drops of 0.1 M $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ to each. Note the result.

Questions for Part II:

1. Use the equations you balanced above to explain the results you obtained in Steps c, d, e of Part II.
2. Make a statement summarizing your results with the chromate ion- dichromate ion equilibrium which includes the application of the Principle of le Chatelier.

Write a critique for this lab.

