Lab: Density by Archimedes' Principle

Name \qquad Period \qquad

An immersed body is buoyed up by a force equal to the weight of the displaced fluid.
PURPOSE: To find the density of four minerals and one ring (or other jewelry) by Archimedes' Principle.

Show your calculations below.

1. Take only one mineral at a time, then trade it for another.
2. Hang it from a thread and mass it to the nearest 0.01 g in air and under water.
3. Determine the density using $\mathbf{D}=\mathbf{m} / \mathbf{V}$ where $\mathbf{m}=$ mass in air, $\mathbf{V}=$ loss of mass in water (the buoyant force). Because the density of water is $\mathbf{1 g} / \mathbf{c m}^{\mathbf{3}}$, we can substitute $\mathrm{cm}^{\mathbf{3}}$ for the buoyant force.
4. Calculate its Mass Density in $\mathbf{g} / \mathbf{c m}^{3}$.
5. Repeat the above for three more samples and a ring. (Gold jewelry is alloyed with copper to make it hard enough to wear because pure gold is too soft). The density of pure gold is $19 \mathrm{~g} / \mathrm{cm}^{3}$.

Data Table:

Description of Mineral	Mass in Air	Mass in Water	Loss of Mass	Density in g/ $\mathbf{c m}^{3}$
-				
Gold (or other) ring				

Show your CALCULATIONS \& CRITIQUE:

