Archimedes 3/22/05 1:56 PM

Lab: Density by Archimedes' Principle

Name	Period

An immersed body is buoyed up by a force equal to the weight of the displaced fluid.

PURPOSE: To find the density of four minerals and one ring (or other jewelry) by Archimedes' Principle.

Show your calculations below.

- 1. Take only one mineral at a time, then trade it for another.
- 2. Hang it from a thread and mass it to the nearest 0.01g in air and under water.
- 3. Determine the density using D = m/V where m = mass in air, V = loss of mass in water (the buoyant force). Because the density of water is $1g/cm^3$, we can substitute cm^3 for the buoyant force.
- 4. Calculate its Mass Density in g/cm³.
- 5. Repeat the above for three more samples and a ring. (Gold jewelry is alloyed with copper to make it hard enough to wear because pure gold is too soft). The density of pure gold is 19 g/cm³.

Data Table:

Description of Mineral	Mass in Air	Mass in Water	Loss of Mass	Density in g/ cm ³
		- -		
Gold (or other) ring		 	.	

Show your CALCULATIONS & CRITIQUE: